PHGN570 Spring2016
Main Page  >  Physics Course Wikis 
Contents 
Course Information
Professor: Chip Durfee
Office: Timberline trailer #1, room 15
Meeting Times: Monday, Wednesday 4:305:45.
Room: Alderson 340
Announcements
1 Mar: HW3 clarifications: More clarifications:
Problems 37 are all for the same experimental situation.
For problem 3c, assume the beam is in the lowest order, 11 mode. Keep in mind, that in contrast to the example I worked in class, the core of the waveguide is glass (you can use fused silica), so you need to modify the dispersion expression to include the dispersion of that material.
For problem 4, set the wavelength to 800nm and the window length 1mm. problem 1: First set up the calculation so you can look at the pulse in the time domain for a given input Taylor series spectral phase. Then you vary the amount of the different phase orders (phi2, phi3, phi4) until the FWHM is about 3x the original pulse. This is to give a feel for what order of magnitude of these parameters makes a difference.
Problem 2: There was a typo and an important missing line of explanation. The corrected version is reposted as of now (10:30am tuesday).
Also, to help you out, I've posted in the Mathematica demo section below the exercise in pulse propagation and compression that we worked on last week. This version has working code and plots.
24 Feb: Today we will meet at 4pm in CTLM 231 for some handson computer work.
17 Feb: Homework 3 is posted. It will be due in class, 2 March. There are a number of problems, so don't hold off on working on it, and come see me for help if you need it.
1 Feb: Homework 2 is posted. work on problems 3 and 5 before class on Wednesday, so you can ask questions in class. I am still waiting for confirmation, but we should be meeting in CTLM room B56 Wednesday at 4pm, where they will have computers we can use.
27 Jan: In class today, I discussed an alternate approach to understanding the KramersKronig relations without contour integration. Here is a link to a nice document that explains it well. link Understanding the KramersKronig Relation Using A Pictorial Proof by Colin Warwick
26 Jan: Homework 1 notes:
You can have 2 more days to do the homework, now due by 5pm Friday in my mailbox.
for problem 1 the Theta function is the Heaviside step function, or UnitStep[ ] in Mathematica.
In problem 3, I had the inequality backwards, it should be T << t_1, so that the separation is greater than the width of the pulses.
Both of these are corrected in the currently posted version.
For wednesday, we will start at 4pm. Please bring a laptop that can run Mathematica.
25 Jan: We will meet at the regular time today, but think about starting earlier at 4 on wednesday. Also, in class today, can you let me know if you each have a laptop that can run mathematica? If so, we could do some computational exercises in class.
19 Jan: HW 1 is posted below.
16 Jan: Welcome to the new Wiki page for Fourier Optics! The syllabus is posted below.
For Monday's class, please go over transform pairs for Gaussian and Dirac delta functions, as well as linearity, shift and scale theorems, Parseval's theorem, and symmetry properties of Fourier transforms. We'll do inclass exercises with these.
I don't have any other travel planned for the semester yet, but this upcoming week, I have a meeting in DC for a project that is just starting up. The meeting is all day thursday and friday, and I can't get a flight out later than 4:30. This means that I will have to miss that class (01/20). On monday we'll discuss how to make that up.
Office hours
Office hours:
Tentative: Monday 14, Wed 13
Course Material
Syllabus and Reading List
These downloads require Adobe Acrobat Reader

Fourier Transform ID sheets and other reference material
Note that the conventions (sign, 2 pi, ...) are different for the tomega and xfx domains.
These downloads require Adobe Acrobat Reader

Homework Assignments
Lecture Notes
This list is from 2016
These downloads require Adobe Acrobat Reader

This list below is from 2014. New notes will be posted above this.
These downloads require Adobe Acrobat Reader

Mathematica Demos
You can use these as a template for programming you want to do. I would like you to attribute me when you do though.
These aren't actually pdf's. Do a "save link as" to save these to your computer, then open with Mathematica. In most cases the output has been deleted to save server space, so you have to run the code to see the output.
Please note that thee is a bug in the Fourier[ ] routine (FFT) in v7.0.0. This does not show in earlier versions, and was fixed in 7.0.1 and later. (9.0.1 is the current version)
These downloads require Adobe Acrobat Reader

some older files (written in v5.2. These will be updated soon and posted above.)
These downloads require Adobe Acrobat Reader

Links to literature in Fourier optics
Each one of you should add references you think would be of general interest to this list  a minimum of one every other week.
Click 'edit' at the right to add references. Include a short description, make a new category if it makes sense. Links only  don't upload actual pdf's please. Put your last name and posting date along with the citation.
Feel free to add to the list of database and journal sites. The list below is old  let me know if any of the links are dead.
Journal Database pages
Use these to go to papers where you know the reference, or for searching for related papers
Scitation: American Institute of Physics journals search
Optics Infobase: Optical Society of America journal search
Journal pages
You can go to these to browse current issues or to look up specific references.These journal are (mostly) European journals not indexed through Scitation or Optics Infobase. Go to OpticsInfoBase for Optics Letters, Josa A and B, Optics Express, Applied Optics, etc.
Journal Articles
Spectral interferometry
sample link  more to come...
 Midwinter et al, British J. Applied Phys v16 p1135 (1965) "The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of secondorder nonlinear optical polarization" Derivation of the variation of dEff in nonlinear crystals with beam direction. (Durfee 1/12/2007) Midwinter (1965)
Other course Links
Signals and Systems  MIT OpenCourseWare
JavaOptics: a nice collection of opticsrelated demonstrations